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1. More Results
1.1. OpenRooms

We include more examples of material, geometry and
lighting estimation on OpenRooms in Fig. 1. In general we
demonstrate more spatially consistent material estimation
(e.g. the textured floor in bright and shadowed areas in sam-
ple 1, or the surface of the sink table in sample 2), better
geometry in challenging lighting (e.g. the shape of the sink
bowl in sample 2, consistency of the flat wall in samples 3
and 4), as well as fewer artifacts in re-rendered results as a
result of overall better estimation of all factors.

1.2. Real World Images

We include more examples of material, geometry and
lighting estimation on real world images from Garon et
al. [5] in Fig. 2. We arrive at similar observations on compar-
isons of geometry, material and lighting as in the previous
subsection, and we prove that our methods generalize well
to real world indoor images in the wild.

1.3. IIW

We include more examples of albedo estimation on IIW
in Fig. 3 to showcase our state-of-the-art albedo estimation
from our models finetuned on IIW, with better spatial consis-
tency and rich details.

1.4. NYUv2

We include more examples of depth and normal esti-
mation on NYUv2 in Fig. 4 to show improved geometry
estimation compared to previous works in multi-task inverse
rendering setting.

1.5. Object Insertion

We show in Fig. 5 more samples of virtual object inser-
tion where we achieve with more photorealistic results. In
particular, we show more physically plausible lighting with
better spatial consistency (e.g. lighting on the bunnies which
sit against major light sources to the camera in sample 2 and

4), strong and accurate directional lighting (e.g. the bunnies
around the lighting sources in sample 1 and 2 where they
are properly lit up or darkened according to their relative
position and orientation w.r.t. the kitchen/desk lamps).

1.6. Material Editing

We show in Fig. 6 an additional material editing result.
We observe that our method can recover spatially-varying
lighting, with the rendered result similar to that of prior
state-of-the-art [7].

1.7. Attention Maps

We include more examples of the attention maps of se-
lected patches on real world images in Fig. 7. Our model
learns to attend to various semantic regions within the image
(e.g. the entire object, other objects, area of highlights or
shadows, etc.) to update the token (feature) for a patch, with-
out explicit supervision of semantic regions. This attention
across potentially long-range interactions results in better
disambiguation of the shape, material and lighting factors.

2. Model Design Details
2.1. Detailed Architecture

The modules in IRISformer mostly follow the design of
DPT-hybrid [9] as detailed in Fig. 8. We denote the convolu-
tional operation as conv(k,s,p,c) where k is the convo-
lutional kernel size, s is stride, p is padding, and c is output
channels. BN is for batch normalization, upsample is for
2x bilinear interpolation. All convolution layers are followed
with ReLU activation unless otherwise stated, and with Batch
Normalization except in Head where BN is only optionally
applied to the second convolution layer (further comparison
included in Subsection 2.2). We use the same residual atten-
tion module in Transformer layers as in DPT [11] or ViT [3]
where each layer is followed by GELU activation [6] and
Layer Normalization [1].
Head design. We use BN in all heads of BRDFGeoNet
as we found it to be useful to stabilize training. However
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Figure 1. Additional BRDF, geometry and lighting estimation on OpenRooms. Small insets (best viewed when enlarged in PDF version) are
estimations processed with bilateral solvers (BS).
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Figure 2. Additional BRDF, geometry estimation, per-pixel lighting and re-rendering results on Garon et al. [5] (after BS). Insets are results
before BS.



Input Image Ours (multi) Ours (single)Li et al. 2021CGIntrinsics 2018

Figure 3. Additional intrinsic decomposition results on IIW [2] (all before BS). The inset figure within each result is the result after BS.
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Figure 4. Additional geometry estimation results on NYUv2 [12] (all without BS).
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Figure 5. Additional virtual object insertion results.
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Figure 6. An additional material editing result.

we choose not to use BN in LightNet heads as it will tend
to force the model to converge to a local minimum which
produces blurry results. The choice of BN is mostly empiri-
cal but we include additional comparison on BN in Table 3
where we disable BN for BRDFGeoNet or enable BN for
LightNet and compare with previous results to support our
choice.

All heads share similar architecture as illustrated in Fig. 8
except for the Post-process layer where non-trainable
normalization or activation operations are applied depending
on the specific domain. For albedo, normals and roughness
we use tanh activation so that the output is constrained in a
closed range of [-1, 1] due to the physical nature of those
properties. Albedo and roughness prediction are later re-
scaled to [0, 1] while normals are normalized to have unit
L2 norm. For depth, we also use tanh activation plus scaling
to predict inverse depth within (0, 1] and then invert to linear
depth space.

For LightNet heads of bandwidth of SGs {λk}Kk=1 and
intensities {fk}Kk=1 we again use tanh and re-scale output to
[0, 1]. For estimating axes {ξk}Kk=1, we use the same rule as
estimating normals via tanh plus normalization.

2.2. Ablation Study on Model Design

We include comparison on several design choices and
report the performance. The comparisons include (1) shar-
ing or not sharing decoders in BRDFGeoNet in multi-
task setting, where we provide comparison on joint esti-
mation of albedo+roughness (material tasks) in Table 1 or
albedo+normal (material and geometry jointly estimated) in
Table 2, considering the full multi-task model with 4 inde-
pendent decoders does not fit into our hardware for training;
(2) BN or no BN, where we compare in single-task estima-
tion of depth, albedo and lighting in Table 3; (3) 4 layers
in encoder/decoder vs. 6 layers, in single-task models in
Table 4 as an addition to Table 5 in the main paper. We con-
clude that, (1) there is not a significant performance drop by
sharing decoders, or using 4 layer in Transformers, but there
are benefits for significant memory saving; (2) BN works
better for BRDFGeoNet heads while no BN is preferred
for LightNet heads. We demonstrate that, by empirically
comparing those choices we arrive at our final architecture,
which achieves reasonable trade-off between memory cost
and accuracy.

al+ro sharing decoders not sharing decoders
Model Size (MB) 1,206 1.606

Inference (ms) 34.4 42.3
LA 0.50 0.51
LR 1.91 1.88

Table 1. Analysis on whether to share decoders in multi-task joint
estimation of albedo and roughness: comparison on model sizes,
inference speed and losses.

al+no sharing decoders not sharing decoders
Model Size (MB) 1,206 1.606

Inference (ms) 34.4 42.3
LA 0.51 0.51
LN 1.88 1.85

Table 2. Analysis on whether to share decoders in multi-task joint
estimation of albedo and normals: comparison on model sizes,
inference speed and losses.

BN no BN
LA in single-task albedo estimation 0.43 0.51
LN in single-task normal estimation 1.89 1.92

Llight in multi-task lighting estimation 13.23 12.54

Table 3. Analysis on whether to use BN in output heads in single-
task estimation of albedo and normals, as well as multi-task estima-
tion of lighting: comparison on losses.

single-4 single-6
LA 0.48 0.43
LR 1.93 1.91
LD 1.43 1.42
LN 1.89 1.89

Table 4. Analysis on 4-layer encoder-decoder design vs. 6-layer
versions in single-task estimation of albedo, roughness, normals
and depth, as well as multi-task estimation of lighting: comparison
on losses.

3. Training Details

We train our entire pipeline in two stages: (1) train BRD-
FGeoNet with full supervision on albedo, roughness, depth
and normals, (2) freeze BRDFGeoNet, feed the output to
LightNet and train LightNet with full supervision on the
estimated lighting map and re-rendered image. We addi-
tionally use binary masks on pixels of objects Mo ∈ Rh×w

or M′o ∈ Rh×w×3 (excluding windows), and masks on
pixels of valid materials and lighting Ml ∈ Rh×w or
M′l ∈ Rh×w×3 (excluding surface of lit-up lamps and win-
dows).

For the first stage, as stated in Sec.3.1, we use scale-
invariant L2 loss [7,10] for albedo and depth (log space) and
L2 loss for roughness and normals. Specifically, for losses
on roughness and normals, we have:

LR = ||(R− R̂) ·Ml||22, (1)
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Figure 7. More attention maps learned by the single-task model for albedo, on real world images. We pick 4 samples of real world images,
and for each image show two attention maps for each of two selected token locations.
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Figure 8. Details of the modules of the single-task and multi-task models (left) and the Decoder-fusion module (right). Reassemble
operation is introduced in DPT [9]. Details of the Post-process operation for different modalities can be found in text. The ratio and
integer in gray font around each arrow are respectively the output tensor size w.r.t. original input size to the network, and output tensor
channels.

LN = ||(N− N̂) ·M′o||22. (2)

For albedo, the loss is

LA = ||(A− Â′) ·M′l||22, (3)

where Â′ is the estimated albedo aligned to the ground truth



from a least-squares solution [7]. For depth, the loss is
computed in log space:

LD = ||(logD− log D̂′) ·M′o||22 (4)

where similarly D̂′ is the estimated depth aligned in log
space to the ground truth from a least-squares solution [7].

Given we train the entire pipeline in two stages, we break
Lall into two losses; Lall = LBRDFGeo + Llight. In training
BRDFGeoNet in multi-task setting, the loss LBRDFGeo is a
weighted combination of losses on albedo, roughness, depth
and normals:

LBRDFGeo = λALA + λRLR + λDLD + λNLN, (5)

where λA = 1.5, λR = 0.5, λD = 0.5, λN = 1.0.
In single-task settings, the loss for each task will simply

be the corresponding loss term weighted by the correspond-
ing weight. In the second stage of training LightNet, the
loss is a combination of the lighting map reconstruction loss
and the image-space re-rendering loss:

Llight = λLLL + λILI (6)

with λL = 10.0 and λI = 1.0.
All models are trained with a learning rate of 1e− 5 and

a batch size of 8 with Adam optimizer without weight decay,
over the entire training set of OpenRooms for 40 epochs
until convergence.
Finetuning details. For finetuning on IIW and NYUv2, we
follow Li et al. [7] on losses and finetuning strategy for a
fair comparison. In each finetuning step, we draw one batch
of size 8 from IIW/NYUv2, do a full feed-forward pass and
back-propagation with a learning rate of 1e-5, using relative
loss on albedo or full supervised loss on normals and depth
as described in Li et al. [7]. Then we draw another batch
from OR of size 8, do the same training step as what is done
in pre-training the models on OR. We finetune on IIW/NYU2
for 10 epochs in all finetuning experiments.

4. User Study Details
For the user study, we employ users from Amazon Me-

chanical Turk to determine the photorealism of an image with
inserted bunnies. We compare object insertion results from
a set of methods including Gardner’17 [4], Garon’19 [5],
Li’21 [8], ours and results rendered using ground truth light-
ing. In each task, we ask the user to do an A/B test where
a pair of images from both our method (multi-task setting)
and one baseline method are presented. The user is asked to
pick the one with ‘better photorealism’ based on how well
all the inserted objects blend into the image. Each pair of
images is presented to 20 users and for each method we use
all 20 images from Garon et al. [5] with inserted bunnies.

We interpret the results as follows: for each comparison of
ours against a baseline method, the percentage of users who
consider results from the baseline method as better than ours,
by averaging 20 feedbacks from each comparison.

5. Statement on Potential Negative Impacts

As stated in the main paper, one possible negative impact
of our method is the vulnerability to misuses including Deep-
fake [13]. While there is no way to prevent our method to be
used by a third-party once it is open-sourced, a way to miti-
gate the potential negative impact is to employ techniques
like Yu et al. [14] to embed fingerprinting into the model
and hence the results, so that tracing of accountability of
improperly edited or generated results will be made possible
to countermeasure malicious use.

Another impact is due to the nature of the transformer
architecture we use. Due to the fact that transformers are
relatively new and understudied especially for computing
efficiency on current dedicated deep learning hardware, as
well as their larger computing cost compared to previous
CNN-based models on similar tasks, the new models may
result in increased carbon footprint if deployed on a large
scale. Thus it is important to dedicate more research effort
to discover improvements to the architecture and hardware
implementation, so that the potential energy and environ-
mental concerns can be mitigated while enabling the use of
transformers in inverse rendering.
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